Dre-class Warm-up!!!
Which of the following results have we already seen in a previous section, to do with a path c : $[a, b]->R \wedge n$ and a vector field F on $R \wedge n$?
a. If $F=\operatorname{grad} f$ then $\int_{c} F \cdot d \underline{s}=f(c(b))-f(c(a))$
b. If $\int_{c} F \cdot d \underline{s}=f(c(b))-f(c(a))$
for some function f then $F=\operatorname{grad} f$
c. If $F=\operatorname{grad} f$ then $\int_{C} F \cdot d \underline{s}$ does not depend on the particular choice of path from $c(a)$ to $c(b)$
d. When $\mathrm{n}=3$, if $\mathrm{F}=\operatorname{grad} \mathrm{f}$ then $\operatorname{curl} \mathrm{F}=0$
e. $\int_{C} F \cdot d s$ does not depend on the particular choice of path from $c(a)$ to $c(b)$

Quiz timour ar 7.1, 7.2,8.1
Exam 2 Tuesday next week. Everything
since Exam 1 io 8.1 . since Exam 1 up o 8.1.

Yes No l Not correct
Yes No
Yes/ No
Yes No' False

Section 8.3 Conservative vector fields

What we learn:

- a more complete angle on the gradient vector fields we have already studied
- path-independence
- another way to find a potential function whose gradient the field is
- a criterion for when a vector field is conservative
- slightly more elaborate applications, similar to what we have seen before

Theorem 7.
Let F be a vector field on $R \wedge n$. The following are equivalent:
(ii) For any two oriented curves C_1 and C_2

$$
\text { that have the same end points } \int_{C_{1}} F \cdot d \underline{s}=\int_{C_{2}} F \cdot d \underline{s}
$$

(iii) F is the gradient of some function f
(i) For any oriented simple closed curve C,

$$
\int_{C} F \cdot d \underline{s}=0
$$

(iv) (assuming $n=3$) curl $F=0$

Definition: a vector field satisfying (ii) is called conservative

We have seen before?

- (ii) $=>$ (iii) Yes No
- (iii) $=>$ (ii) Yes No
- (i) $=>$ (ii)
- \quad (ii) $=>$ (i)
Yes No
- (iii) $=>$ (iv)

Yes No

- (iv) $=>$ (iii)

Yes No

Comments on:
(iii) F is the gradient of some function f

$$
<=>
$$

(iv) (assuming $n=3$) curl $F=0$

We have (sort of) seen (iii) \Rightarrow (iv) before:

$$
\nabla \times \nabla f=0
$$

$\nabla \times \nabla f=0$.
Check this: $\nabla \times\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$

$$
=\left(\frac{\partial}{\partial y} \frac{\partial f}{\partial z}-\frac{\partial}{\partial z} \frac{\partial f}{\partial y}\right)
$$

$\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial^{2} f}{\partial z \partial}$ if these derivativel existand $\frac{\partial t}{\partial y \partial z}=\frac{\partial z}{\partial z \partial y}$ are continuous.
We get $\nabla \times \nabla f=0$
$\operatorname{cur} L F=\nabla \times F \quad \operatorname{grad} f=\nabla f \quad \operatorname{div} F=\nabla \cdot F \mid$

2-dimensional version
A vector field $F=\left(F_{1}, F_{2}\right)$ in F_{f} for some $f: \mathbb{R}^{2} \longrightarrow R \Longleftrightarrow$

$$
\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}=0 \Leftrightarrow \frac{\partial F_{2}}{\partial x}=\frac{\partial F_{1}}{\partial y}
$$

Recall $\nabla \times \nabla f=0, \nabla \cdot \nabla \times G=0$
a hays
Theorem: When $\mathrm{n}=3$, given a vector field F we can write
" $F=\operatorname{curl} G \ll \operatorname{Div} F=0$
$\overrightarrow{\mathbb{P}}^{\neq} F=\nabla \times G$ then $\nabla \cdot F=\nabla \cdot \nabla \times G=0$
" \Leftarrow " is beyond our scope.

Questions (like 1-4, 17, 18):
Determine if the vector field

$$
F(x, y, z)=(-2+4 y,-4 x, 0)
$$

is a gradient vector field. If it is, find a function f so that $F=\operatorname{grad} \mathrm{f}$.
Determine whether $F=$ curl G for some vector field G (but do not find G).

Solution. To see if $F=\nabla f$ for some f we calculate

$$
\begin{aligned}
& \nabla \times F=\left(\frac{\partial 0}{\partial y}-\frac{\partial}{\partial z}\left(-\psi_{k}\right), \frac{\partial}{\partial z}(-2+4 y)-\frac{\partial 0}{\partial x}\right) \\
& \left.\frac{\partial(-4 x)}{\partial x}-\frac{\partial(-2+4 y)}{\partial y}\right) \\
& =(0,0,-4-4)=(0,0,-8)
\end{aligned}
$$

F is not ∇f for any f.
Next, we calculate $\nabla \cdot F$

$$
=\frac{\partial}{\partial x}(-2+4 y)+\frac{\partial}{\partial y}(-4 x)+\frac{\partial}{\partial z} 0=0
$$

Thus $F=\nabla \times G$ for some G.

Comments on:
(ii) For any two oriented curves C_1 and C_2 that have the same end points $\int_{C_{1}} F \cdot d \underline{d}=\int_{C_{2}} F d s$
(iii) F is the gradient of some function f

We have seen (iii) \Rightarrow (ii) . if $F=\nabla f$ then $\int_{\text {any } C} F=f(c(b))-f\left(c^{(a)}\right)$ is independent of choice f C
(ii) \Rightarrow (iii). Assume (ii). We construct a function f with $F=D f$. Pick a point \underline{u} in \mathbb{R}^{n}. For any vector \underline{v}
define $f(v)=\int_{c} E \cdot d s$ whee c is any path form $u-b v$
We have to show $\nabla f=F$
Carder $F_{3}=\frac{\partial}{\partial z} f$

is an anhidenvative of $F_{3}, \frac{\partial f}{\partial 2}=F_{3}$
Do the some int components F_{1} and F_{2}, and add

We have a new way to compute a potential function f for F when F is conservative, but in practice it is not an improvement on the way we have already seen.

Example: Find f so that $F=\operatorname{grad} f$ when $F(x, y, z)=\left(e^{\wedge} x \sin y, e^{\wedge} x \cos y, z \wedge 2\right)$.
Solution: We solve

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =e^{x} \sin y \quad \frac{\partial f}{\partial y}=e^{x} \cos y \quad \frac{\partial f}{\partial z}=z^{2} \\
f & =e^{x} \sin y+\frac{1}{3} z^{3}
\end{aligned}
$$

Example: Find $\int_{c} F \cdot d \underline{s}$
when $\left.c(t)=\left(t, e^{\wedge}(\sin t)\right), 0 \leq t \leq \pi\right)$ and $F(x, y, z)=(y, x)$

Solution
In fact F is conservative
$F=\nabla f$ where $f(x, y)=x y$
The integral is $f(c(\pi))-f(c(\theta))$

$$
=\pi \cdot 1-0 \cdot 1=\pi
$$

Comments on
(ii) For any two oriented curves C_1 and C_2 that have the same end points
<=>

$$
\int_{C_{1}} F \cdot d s=\int_{C_{2}} F \cdot d \underline{s}
$$

(i) For any oriented simple closed curve C,

$$
\int_{C} F \cdot d s=0
$$

$(11) \Rightarrow(1)$. Let C start and finish at \underline{s}. Let C_{1} be the constant curve $c,(t)=\underline{u}$ for all t $\int_{C}^{1} F \cdot d \underline{s}=\int_{C_{1}} F \cdot d s$

$$
c_{1}^{\prime}(t)=0 \text { so } \int_{c_{1}}^{c_{1}} F \cdot d s=0
$$

hence $\int_{C} F \cdot d s=0$

