Which of the following results have we already
seen in a previous section, to do with a path c :
[a,b] -> RAn and a vector field F on RAn?

a. If F=gradf then J\ F 015, = f(c(b)) - f(c(a))
c
b. If J F . As= f(c(b)) - f(c(@))
J b
for some function f then F = grad f

c. If F=gradf then f F ‘Olé does not depend
on the particular choice of path from c(a) to c(b)

d. When n=3, if F=gradf then curl F=0

e. f‘0‘§ does not depend on the particular
choice of path from c(a) to c(b)
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Section 8.3 Conservative vector fields

What we learn:

e a more complete angle on the gradient
vector fields we have already studied

e path-independence

e another way to find a potential function
whose gradient the field is

e a criterion for when a vector field is
conservative

e slightly more elaborate applications,
similar to what we have seen before




Theorem 7.
Let F be a vector field on R~An . The following
are equivalent:

(ii) For any two oriented curves C_1 and C_2
that have the same end points
T-ds :j Fede
C

—

Ci 2

(iii) F is the gradient of some function f

(i) For any oriented simple closed curve C,
J' F P Gg§ = O

(iv) (assuming n=3) curl F=0

Definition: a vector field satisfying (ii) is called
conservative

We have seen before?

(i1) => (i)
(i) => (i1)
(i) => (i1)
(i) => (i)
(i) => (iv)

(iv) => (iii)
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2-dimensional version

~ -
vedr old F =(F F.) U
(iii) F is the gradient of some function f %&L < ‘ 23 W

<=> 4& sl “F Y g <
(iv) (@assuming n=3) curl F=0 L O <=> %CL ;’Dﬁ,
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Questions (like 1 -4, 17, 18):

Determine if the vector field

F(x,y,z) = (-2+4y, -4x, 0)

is a gradient vector field. If it is, find a function
f sothat F = gradf.

Determine whether F = curl G for some
vector field G (but do not find G).
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Comments on:

(ii) For any two oriented curves C_1 and

C_2 that have the same end pointsj{:w{g lLFJES
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(iii) F is the gradient of some function f
We Nae sean @) :)(2i> I (-f I::V]B
fan [ F - Fleb) - £l

Asscme (u> We conttued”
a f.,«(/w ]D (,ﬂ‘(t = OF PlOIC
a FD’LP\{’ \u Ih @ fa aw Vel v

=
N~

L

&\

d@gw/ f(ﬂ = f F &[s dhse ¢

Lg an li)afk l/(’b Vv
a\/e,""o gl\ov\/ Vf
3 £2 ‘b?

f@ O F) s = ()CQDOF;S‘&S

<

Vad

=0,
.

ODE»J?
\ Z@:& 47

3

<(5 an ap{\}e/;u,ﬁ/e éL 3 f%{ CTB

Dy the
t( oww

Sow~L - 'A;TL% DOW\FW
omd add



We have a new way to compute a potential
function f for F when F is conservative,

but in practice it is not an improvement on

the way we have already seen.

Example: Find f sothat F =grad f when
F(x,y,z) = (e/\x sin y, eAx cos Yy, z/\2).
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Example: Find J s Oké
C

when c(t) = (t, eA(sint)), 0<t<m) and
F(x,y,2) = (y, X)
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Comments on }\QV\CL f?: A5 = O
i ?,

(i) For any two oriented curves C_1 and C_2

that have the same end points

«/f Feds
<=> € C
(i) For any oriented simple closed curve C,

() o (). Lt C slet 7
7@7«»(56\ ot o, et C be The
Covstond ture ¢ (17> =Uu %( T

J £ ds fws
C
C(IHZ)’*O 2 1‘0(6

— /




