Pre-class Warm-up!!!

Which of the following results have we already seen in a previous section, to do with a path c: $[a,b] \rightarrow R^n$ and a vector field F on R^n ?

a. If F = grad f then $\int_{c}^{b} F \cdot ds = f(c(b)) - f(c(a))$ Yes

b. If $\int_{c}^{c} F \cdot ds = f(c(b)) - f(c(a))$

for some function f then F = grad f

c. If F = grad f then $\int_{C}^{\infty} F \cdot ds$ does not depend on the particular choice of path from c(a) to c(b)

d. When n = 3, if F = grad f then curl F = 0

e. J.F. ds does not depend on the particular choice of path from c(a) to c(b)

Quiz tomorrow on 7.1, 7.2,8.1 Exam 2 Tuesday next week. Everything Since Exam 1 up to 8.1

Yes No Not correct

Secti	on 8.3 Conservative vector fields
VA /I-	
vvn	at we learn:
•	a more complete angle on the gradient
	vector fields we have already studied
•	path-independence
•	another way to find a potential function
	whose gradient the field is
•	a criterion for when a vector field is
	conservative
•	slightly more elaborate applications,
	similar to what we have seen before
	similar to what we have seen before

Theorem 7.

Let F be a vector field on R^n. The following are equivalent:

(ii) For any two oriented curves C_1 and C_2 that have the same end points
$$\int_{C_1}^{F \cdot ds} = \int_{C_2}^{F \cdot ds} f(s) ds$$
(iii) F is the gradient of some function f

(i) For any oriented simple closed curve C,

(iv) (assuming $n = 3$) curl $F = 0$

Definition: a vector field satisfying (ii) is called conservative

(ii) => (iii)

We have seen before?

Yes

Yes

Yes

Yes

No

No

No

(iii) => (iv)

• (i) => (ii)

(iii) => (ii)

No

(iv) => (iii)

Yes

2-dimensional version Comments on: vector field F = (F, Fz) is V (iii) F is the gradient of some function for some f: R2 - R <=> $= 0 \iff \frac{\partial f_2}{\partial x} = \frac{\partial F_1}{\partial y}$ (iv) (assuming n = 3) curl F = 0We have (sort of) seen (iii) => (v) se ove: Check this: $\nabla \times (\partial x, \partial y)$ Recall VX VF = 0, V. VXQ = 0 Theorem: When n = 3, given a vector field F we can write If these derivativel exist and $_{v}$ F = curl G <=> Div F = 0 2224 are continuous. F=V×G Then V.F=V.V×G=0 E's beyond our scope. dry F= V. F curlF= VxF gradf= Vf

Questions (like 1 - 4, 17, 18):

Determine if the vector field

$$F(x,y,z) = (-2+4y, -4x, 0)$$
is a gradient vector field. If it is, find a function f so that $F = \text{grad } f$.

Determine whether $F = \text{curl } G$ for some vector field G (but do not find G).

Solution. To see if $F = \nabla f$ for some f we calculate f and f are calculate f and f and f and f are calculate f and f ar

Thus F = 7×G for some G

define f(v) = I - as whole c 13 any path from u by Comments on: We have to show Of = F (ii) For any two oriented curves C_1 and C_2 that have the same end points \[\int \cdot \ds = \int \ds \] Candides F3 = 02 <=> (iii) F is the gradient of some function f We have seen (iii) > (ii) FF=VF then P = f(c(b)) - f(c(a)) is independent of choice of c is an amdervative of F3, of = F3 (ii) = s(iii) Assume (ii). We construct Do the some inth components a function of with F= Df. Pick F, and Fz, and add. a point u in Rr. For any vector v

We have a new way to compute a potential function f for F when F is conservative, but in practice it is not an improvement on the way we have already seen.

Example: Find f so that
$$F = \text{grad } f$$
 when $F(x,y,z) = (e^x \sin y, e^x \cos y, z^2).$

$$\frac{2}{2} = e^{x} \sin y \quad \frac{2}{3} = e^{x} \cos y \quad \frac{2}{3} = z^{2}$$

$$\frac{2}{3} = e^{x} \sin y \quad \frac{2}{3} = z^{2}$$

$$\frac{2}{3} = e^{x} \sin y \quad \frac{2}{3} = z^{2}$$

Example: Find
$$\int_{c} F \cdot dS$$
 when $c(t) = (t, e^{(\sin t)}), 0 \le t \le \pi$ and $F(x,y,z) = (y, x)$

In fact F is conservative

F=
$$\nabla f$$
 where $f(x,y) = xy$

The integral is $f(c(\tau)) - f(c(\delta))$

= $\pi \cdot 1 - 0 \cdot 1 = \tau$